고객의 선호 특성 정보를 이용한 상품 추천 시스템

(Electronic Commerce : Goods Recommendation System using a Customer`s Preference Features Information)

성경상, 안재명, 박연출, 오해석

한국정보처리학회
(2004. 11)

 

전자상거래 시스템의 보급이 활성화되기 시작하면서, 사용자의 필요와 욕구에 밀착한 적응형 전자상거래 에이전트의 필요성이 증대되고 있다. 이와 같은 적응형 전자상거래 에이전트는 사용자의 행위를 모니터하고 자동 분류하여 사용자의 취향을 학습하는 기능을 요하게 되었다. 이러한 기능을 가지는 적응형 전자상거래 에이전트를 구축하기 위해서, 본 논문에서는 사용자 개인의 관심정보와 선호하는 상품에 대한 호감도를 고려한 적응형 전자 상거래 에이전트 시스템을 제안한다. 제안하는 시스템은 사용자의 구매 행위에 적응력을 가질 수 있도록 보다 정확한 사용자 프로파일을 구축하고, 이와 같은 사용자 프로파일을 기반으로 사용자에게 불필요한 검색과정 없이 필요한 상품 정보를 제공 할 수 있도록 한다. 본 시스템에서는 모니터링을 통하여 사용자 의도를 파악하는 모니터 에이전트, 사용자의 행동성향을 학습 한 후 행동 패턴이 유사한 그룹을 참조하는 유사도 참조 에이전트, 사용자의 행위의 변화에 따른 개인화된 행동 DB를 구축할 수 있는 관심 추출 에이전트로 구성하였다.

 

As electronic commerce systems have been widely used, the necessity of adaptive e-commerce agent systems has been increased. These kinds of adaptive e-commerce agents can monitor customer’s behaviors and cluster them in similar categories, and include user’s preference from each category. In order to implement our adaptive e-commerce agent system, in this paper, we propose an adaptive e-commerce agent systems consider customer’s information of interest and goodwill ratio about preference goods. Proposed system build user’s profile more accurately to get adaptability for user’s behavior of buying and provide useful product information without inefficient searching based on such user’s profile. The proposed system composed with three parts;Monitor Agent which grasps user’s intension using monitoring, similarity reference Agent which refers to similar group of behavior pattern after learned behavior pattern of user, Interest Analyzing Agent which personalized behavior DB as a change of user’s behavior.

 

+ Recent posts